

FUW CENTRE FOR RESEARCH JOURNAL OF SCIENCE AND TECHNOLOGY (FUWCRJST)

GUILDS, MIGRATORY AND CONSERVATION STATUS OF AVIAN COMMUNITY IN A NIGERIAN PROTECTED AREA

Ibrahim Danazumi Abdul¹, Sulaiman Inuwa Muhammad ² Joshua Babalola Balogun³ Tijjani Mustapha⁴ Dauda Haruna⁵ and Fahad Alkasim⁴

¹Faculty of Bio-Sciences, Department of Biological Sciences, Federal University Wukari, Taraba State, Nigeria

²Biological Sciences Department, Federal University Dutse, Jigawa State, Nigeria ³Department of Animal and Environmental Biology, Federal University Dutse, Jigawa State, Nigeria

⁴Department of Plant Science, Federal University Dutse, Jigawa State, Nigeria ⁵Department of Animal and Environmental Biology, Borno State University, Nigeria Corresponding. Email: ibrahimdanazumiabdul@gmail.com

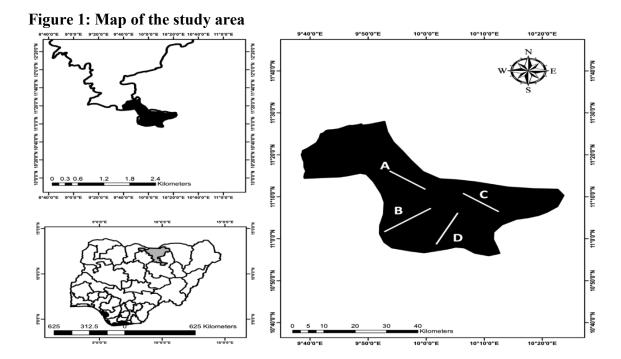
Abstract

According to some studies conducted in Nigeria, human operations like cutting down trees, grazing, converting forests into farms, hunting, and other disturbances have resulted in habitat loss and a decrease in the populations of both resident and migratory birds However, the reasons of many bird reductions in West Africa, including Nigeria, remain unknown due to a paucity of data on habitat usage and feeding ecology for both resident and migratory birds. In Zandama hills forest reserve, Jigawa Nigerian protected area, the study evaluated the guilds, migratory and conservation status of avian community. Line transect approach as was used to survey four transects (Transect A, Transect B, Transect C and Transect D). A total of 8583 individuals from 134 bird species and 47 families were recorded. 84% species recorded were resident birds; 7% intra-African migrant and 5% Palearctic migrant. Insectivores (34 species) account for about 25.4% of all feeding guilds, followed by Granivores (24 species) at 17.9% and Omnivores (20 species at 13.4%), some bird species have multiple feeding guilds. The bird species with the Population Trend categorized as Stable had the most bird species observed with 87 species (64.93%), followed by Decreasing with 27 species (20.15%). Based on the species recorded, Population Status of Least Concern (LC) has the most species recorded, 130 (97.01%), there are others with status Endangered (En) containing two species (1.49%), Near Threatened (NT) and Vulnerable (Vu) containing one species each (0.75%). The two endangered species are the Martial Eagle, *Polemaetus belliocosus*, and the Bateleur, *Terathopius ecaudatus*, while the Tawny Eagle, Aquila rapax, are considered vulnerable and the Red-necked Falcon, Falco chicquera as Near Threatened. The high bird diversity recorded in Zandama hills, including 4 birds of conservation concern; highlight the importance of this area as a key bird habitat in the state.

Keywords: Feeding guild, Bird abundance and diversity, Migration, Residency

Introduction

Birds are important components of ecosystems in forests and are regarded as reliable markers of biodiversity (Şekercioğlu, 2006). They have thus been extensively employed in research contrasting the species richness and composition of natural forests


versus plantations (Stephens and Wagner, 2007). Food availability, vegetative cover, predators, and a number of other ecological variables that represent temporal fluctuations and diversity gradients control guilds (Kissling *et al.*, 2012; Katuwal *et al.*, 2016). Seasonal changes in resource availability are expected to influence varied responses according to feeding guild type (Mulwa *et al.*, 2013; Abdul *et al.*, 2024). Season and landscape factors (vegetation type and location) were revealed to be key drivers in the structure of Dutse bird assemblages, reported by Muhammad *et al.* (2018). Identification and analysis of ecological guilds have been critical in recognizing the mechanisms that determine the organization and structure of communities (González-Salazar *et al.*, 2014; Kornan and Kropil, 2014), and each species fits an ecological role based on its resource use within a community (Ricklefs, 2010).

Many birds in Nigeria are showing decreasing population trends, according to data from the International Union for Conservation of Nature (IUCN) Red List and Birdlife International (e.g., Crested Lark Galerida cristata, Green-backed Heron Butorides striata, Blue-naped Mousebird Urocolius macrourus, and Bruce's Green Pigeon Treron waalia) (Birdlife International 2016, IUCN 2016).

According to some studies conducted in Nigeria, human operations like cutting down trees, grazing, converting forests into farms, hunting, and other disturbances have resulted in habitat loss and a decrease in the populations of both resident (like the imperilled Beaudouin's Snake Eagle *Circaetus beaudouini*, according to BirdLife International 2017a) and migratory birds (e.g the near threatened Pallid Harrier *Circus macrourus*, BirdLife International 2017b). However, the reasons of many bird reductions in West Africa, including Nigeria, remain unknown due to a paucity of data on habitat usage and feeding ecology for both resident and migratory birds (Vickery *et al.*, 2014; Mallord *et al.*, 2016). The forest specialists depend upon plant kind and structure (Gabbe *et al.*, 2002) for substrate for both nourishment and shelter (Lee and Rotenberry 2005). Generalists are favoured throughout the recolonization process (Newbold *et al.*, 2014b), whereas specialists are more vulnerable to extinction in fragments of forest (Henle *et al.*, 2004).

Materials And Methods Study Area

This study was conducted in Zandama hills forest reserve on Latitude: 11°18'34.45" Longitude: 9°43'49.55"(Figure 1). It is located 5 kilometers northeast of Kila, 6 kilometres southeast of Kafin Doki, and 4.5 kilometers north of Kafin Fulani in Jigawa state, Nigeria, with an elevation of 672 meters. It was classified as a national forest reserve and has total area of 23.16 square kilometers (UNEP-WCMC and IUCN, 2021). It has 24.9°C mean temperature with a NE wind of 14 km/h and a humidity of 14%. The highest precipitation is recorded in August with 274.56 mm. The vegetation type is Sudan savanna. Just like many reserves in Nigeria, the Zandama Hills forest reserve is poorly managed with high level of deforestation and other anthropogenic disturbances which might have a negative effect on other species especially the bird community.

Study design and Birds count

A line transect approach was used to survey birds at Zandama hills forest reserve according to Bibby *et al.* (2000). A single transect line of 2000m (2 km) length was put up and the breadth on both sides (strip) was 200 m. Within transects, all birds seen and heard were documented (starting from 06:30 am). The time spent on each transect varied depending on the number of birds sighted, but it was never less than 20 minutes, which was long enough to conduct a comprehensive search for the species. Across the research location, four different transects were marked. Each of the four transects was visited on Saturday, Sunday, and Monday.

Birds Identification

In order to identify birds, Borrow and Demey (2014) field guide was used. Birds that were difficult to identify in the field were photographed with a Canon DSLR (4000D+18-135mm lens and sigma 70-300mm), and their calls was recorded using Merlin and Bird Net for subsequent identification.

Guild classification

Following Gray *et al.* (2006) and Hassan *et al.* (2013), bird species were classified into mutually exclusive feeding guilds based on their dietary preferences. These include insectivorous (species that feed on insects, earthworms, small crustaceans, arthropods, and so on), carnivorous (species that feed on large animals, their dead bodies/carcasses, and so on), omnivorous (species that feed on both animals and plants), granivorous (species that eat seeds and grains), nectivorous (species that feed on nectar), and frugivorous (fruit-eating species).

Assessment of Species Population Trend and Population status

The International Union for Conservation of Nature Red List of Threatened Species version 3.1 (IUCN, 2016) and the Bird Life International website were used to assess species population trends along with the status of conservation concern.

Species Resident status

Borrow and Demey (2014) field guide and the International Union for Conservation of Nature Red List of Threatened Species version 3.1 (IUCN, 2016) website were consulted to establish the residence status of bird species.

Data analyses

The observational data was recorded, and the frequency of visits was analysed using Microsoft Excel (Pivot table function was used to analyze the data). Using PAST software (version 4.03). Diversity indices were used to determine the abundance and diversity of birds across sites, months and seasons.

Results

Composition and seasonal variation of bird species at Zandama Hills

Throughout the course of the research, a total of 8583 individuals from 134 bird species and 47 families were counted. Two endangered bird species (Martial Eagle, *Polemaetus belliocosus*, and the Bateleur, *Terathopius ecaudatus*), and one Vulnerable (Tawny Eagle, *Aquila rapax*) were among the recorded bird species. The findings indicated that Red-cheeked Cordon-bleu (*Uraeginthus bengalus*), Scarlet-chested Sunbird (*Chalcomitra senegalensis*), and Grey-backed Camaroptera (*Camaroptera brachyura*) were the three most prevalent bird species, each with 557 sightings (6.49%), 537 (6.26%), and 504 (5.87%), respectively.

Spatiotemporal utilization of habitats according to feeding guilds

Insectivores (34 species) account for about 25.4% of all feeding guilds, followed by Granivores (24 species) at 17.9% and Omnivores (20 species at 13.4%). It was also discovered that certain bird species use multiple feeding guilds (Table 2)

Table 2: Feeding guilds of birds recorded at Zandama hills

Guilds	Number of species	Percentage (%)	
Insectivore	34	25.4	
Granivore	24	17.9	
Omnivore	20	14.9	
Carnivore	18	13.4	
Granivore, Insectivore	9	6.7	
Carnivore, Insectivore	9	6.7	

Nectarivore	5	3.7
Frugivore	3	2.2
Frugivore, Insectivore	3	2.2
Granivore, Frugivore, Insectivore	2	1.5
Insectivore, Piscivore, Carnivore	1	0.7
Granivore, Nectarivore, Insectivore	2	1.5
Insectivore, Frugivore, Nectarivore	2	1.5
Granivore, Frugivore	1	0.7
Piscivore	1	0.7
TOTAL	134	100.0

Spatiotemporal utilization of habitats according to population trend

The bird species with the Population Trend (PT) categorized as stable had the most bird species observed with 87 species (64.93%), followed by Decreasing with 27 species (20.15%) (Table 3).

Table 3: Population trend of recorded birds' species

Population trend	Number of Species	Percentage (%)
Stable	87	64.9
Decreasing	27	20.2
Increasing	15	11.2
Unknown	5	3.7
TOTAL	134	100

Spatiotemporal utilization of habitats according to population status

Based on the species recorded, Population Status (PS) of Least Concern (LC) has the most species recorded, 130 (97.01%), there are others with status Endangered (En) containing two species (1.49%), Near Threatened (NT) containing one species (0.75%), and Vulnerable (Vu) containing one species each (0.75%). The two endangered species are the Martial Eagle, *Polemaetus belliocosus*, and the Bateleur, *Terathopius ecaudatus*, while the Tawny Eagle, *Aquila rapax*, are considered vulnerable and the Red-necked Falcon, *Falco chicquera as* Near Threatened.

Spatiotemporal utilization of habitats according to residence status

Based on the bird species observed, 112 bird species (or 84%) were local residents, 10 species (7%) were intra-African migrants, and 7 species (5%) were Palearctic visitors (Figure 2).

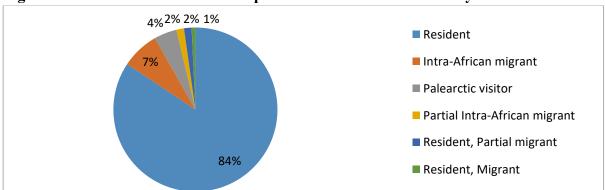


Figure 2: Residence status of birds' species recorded across the study sites

Discussions

Spatiotemporal utilization of habitats according to feeding guilds, residence status, population trends and status

During the research, insectivores were the most common feeding guild, followed by granivores, omnivores, and carnivores. Grey-backed Camaroptera (C. brachyura) and Tawny-flanked Prinia (Prinia subplava) were the most frequently encountered insectivores during the investigation. This was consistent with the findings of Muhammad et al. (2018), who identified insectivorous bird species as the most prominent eating guild in his research. He believes that the larger number of insectivorous bird species identified might be attributed to the availability of farmlands, which supply supplemental food (insects), especially while doing cultivation and harvest. This study agrees with the findings of Sohil and Sharma (2020), who performed research in India and found insectivorous bird species to be the most prominent guild. It also aligns with the findings of Buba et al., 2021, who found higher insectivorous species in the Ngel Nyaki forest reserve. According to Bonilla et al. (2012), and Ding et al. (2019), insectivores are the most species-rich feeding guild. These are common in insect-rich habitats such as streamside regions, woods, and informal settlements (Gatesire et al., 2014). Increased plant production indicates an increase in insect population, and hence an increase in insectivores (Pettorelli et al., 2011). Increased shrub canopy in urban settings provides a good habitat for food and shelter while also increasing insectivore guild richness (Perera et al., 2017).

Granivores were the second most abundant guild. Granivores with a large number of observations were *Uraeginthus bengalus*, *Emberiza goslingi*, *Spilopelia senegalensis*, and *Streptopelia vinacea*. This large quantity might be due to the existence of farmlands, trees, and grasses, all of which generate seeds required by birds. This is consistent with the findings of Ringim and Shafi'u (2019), who found granivores to be the second most abundant guilds in Kafin gana and Warwade, owing to considerable agricultural operations in the two locations. The presence of Accipitridae in high abundance at Zandama Hills showed good ecological production and intactness (Jamwal *et al.*, 2017). According to Sohil and Sharma (2020), the existence of a variety of invertebrates, tiny

rodents, and plants may be responsible for a greater proportion of carnivores and omnivores.

REFERENCES

- Abdul, I. D., Muhammad, S. I. Balogun, J. B., Abdullahi, H. A., & Dauda, H. (2024). Effect of seasonal change and anthropogenic activities on the abundance and diversity of birds in a Nigerian protected area. *Proceedings of the first CAZE International Conference, Federal University Dutse*, 70-75.
- Birdlife International. (2016a). Country profile: Nigeria. Available from: Retrieved on 19/02/2016 from http://www.birdlife.org/datazone/country/nigeria.
- BirdLife International. (2016b). IUCN Redlist for birds. Retrieved on 19/02/2016 fromhttp://www.birdlife.org.
- BirdLife International. (2017c). Endemic bird areas factsheet: Lower Niger valley. Retrieved on 07/04/2017 from http://www.birdlife.org.
- Birdlife International. 2017a. *Circaetusbeaudouini* (amendedversion of assessment). The IUCN Red List of Threatened Species.
- Birdlife International. 2017b. *Circus macrourus*. The IUCNRed List of Threatened Species.
- Borrow, N. and Demey, R. (2014). Birds of Western Africa, Princeton University Press, Princeton, New Jersey.
- Buba, T., & Jaafar, R. M. (2021). Impacts of trees species and functional traits on birds visitation in a Nigerian montane forest: Implications for conservation: Trees Functional Traits and Birds Visitation. *Scientific African*, 12, e00783.
- de Bonilla, E. P. D., León-Cortés, J. L., & Rangel-Salazar, J. L. (2012). Diversity of bird feeding guilds in relation to habitat heterogeneity and land-use cover in a human-modified landscape in southern Mexico. *Journal of Tropical Ecology*, 28(4), 369-376.
- Ding, Z., Liang, J., Hu, Y., Zhou, Z., Sun, H., Liu, L., & Si, X. (2019). Different responses of avian feeding guilds to spatial and environmental factors across an elevation gradient in the central Himalaya. *Ecology and Evolution*, *9*(7), 4116-4128.
- Gabbe, A. P., Robinson, S. K., & Brawn, J. D. (2002). Tree-species preferences of foraging insectivorous birds: implications for floodplain forest restoration. *Conservation Biology*, 16(2), 462-470.
- Gatesire, T., Nsabimana, D., Nyiramana, A., Seburanga, J. L., & Mirville, M. O. (2014). Bird diversity and distribution in relation to urban landscape types in Northern Rwanda. *The Scientific World Journal*, 2014.
- González-Salazar, C., Martínez-Meyer, E., & López-Santiago, G. (2014). A hierarchical classification of trophic guilds for North American birds and mammals. *Revista Mexicana de Biodiversidad*, 85(3), 931-941.
- Gray, M. A., Baldauf, S. L., Mayhew, P. J., & Hill, J. K. (2007). The response of avian feeding guilds to tropical forest disturbance. *Conservation Biology*, 21(1), 133-141.
- Hassan, S. N., Salum, A. R., Rija, A. A., Modest, R., Kideghesho, J. R., & Malata, P. F. (2013). Human-induced disturbances influence on birdcommunities in coastal

- forest in eastern Tanzania. *British Journal of Applied Science & Technology*, 3(1), 48-64.
- Henle, K., Davies, K. F., Kleyer, M., Margules, C., &Settele, J. (2004). Predictors of species sensitivity to fragmentation. *Biodiversity & Conservation*, 13(1), 207-251.
- IUCN (International Union for the Conservation of Nature and Natural Resources). (2016). The IUCN Red List of Threatened Species. Version 2016-1.
- Jamwal, P. S., Chandan, P., Rattan, R., Anand, A., Kannan, P. M., & Parsons, M. H. (2017). Survey of avifouna of Gharana wetland reserve: implication for conservation in a semi-arid agricultural setting on the Indo-pakistan border. *BMC Zoology*, 2(1), 1-9.
- Katuwal, H. B., Basnet, K., Khanal, B., Devkota, S., Rai, S. K., Gajurel, J. P., & Nobis, M. P. (2016). Seasonal changes in bird species and feeding guilds along elevational gradients of the Central Himalayas, Nepal. *PLoS One*, 11(7), e0158362.
- Kissling, W. D., Sekercioglu, C. H., &Jetz, W. (2012). Bird dietary guild richness across latitudes, environments and biogeographic regions. *Global Ecology and Biogeography*, 21(3), 328-340.
- Koran, M., & Kropil, R. (2014). What are ecological guilds? Dilemma of guild concepts. *Russian Journal of Ecology*, 45(5), 445.
- Lee, P. Y., & Rotenberry, J. T. (2005). Relationships between bird species and tree species assemblages in forested habitats of eastern North America. *Journal of Biogeography*, 32(7), 1139-1150.
- Mallord, J. W., Orsman, C. J., Roberts, J. T., Skeen, R., Sheehan, D. K., & Vickery, J. A. (2016). Habitat use and tree selection of a declining Afro-Palaearctic migrant at sub-Saharan staging and wintering sites. *Bird Study*, 63(4), 459-469.
- Muhammad, S. I., Ramli, R., & Then, A. Y. (2018). Seasonality, habitat type and locality influenced bird assemblage structure in Nigeria. *Ostrich*, 89(3), 221-231.
- Mulwa, R. K., Neuschulz, E. L., Böhning-Gaese, K., & Schleuning, M. (2013). Seasonal fluctuations of resource abundance and avian feeding guilds across forest–farmland boundaries in tropical Africa. *Oikos*, *122*(4), 524-532.
- Newbold, T., Hudson, L. N., Phillips, H. R., Hill, S. L., Contu, S., Lysenko, I., ... & Purvis, A. (2014). A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. *Proceedings of the Royal Society B: Biological Sciences*, 281(1792), 20141371.
- Perera, P., Wijesinghe, S., Dayawansa, N., Marasinghe, S., & Wickramarachchi, C. (2017). Response of tropical birds to habitat modifications in fragmented forest patches: A case from a tropical lowland rainforest in south-west Sri Lanka. *Community Ecology*, 18(2), 175-183.
- Pettorelli, N., Ryan, S., Mueller, T., Bunnefeld, N., Jędrzejewska, B., Lima, M., & Kausrud, K. (2011). The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology. *Climate research*, 46(1), 15-27.

- Ricklefs, R. E. (2010). Evolutionary diversification, coevolution between populations and their antagonists, and the filling of niche space. *Proceedings of the National Academy of Sciences*, 107(4), 1265-1272.
- Ringim, A. S., and Shafi'u, A. (2019). Composition and Diversity of Birds: A Comparative Study between two Wetlands. *FUTY Journal of the Environment*, 13(1), 75-83.
- Sekercioglu, C. H. (2006). Increasing awareness of avian ecological function. *Trends in ecology & evolution*, 21(8), 464-471.
- Sohil, A., & Sharma, N. (2020). Assessing the bird guild patterns in heterogeneous land use types around Jammu, Jammu and Kashmir, India. *Ecological Processes*, 9, 1-15.
- Stephens, S. S., & Wagner, M. R. (2007). Forest plantations and biodiversity: a fresh perspective. *Journal of forestry*, 105(6), 307-313.

 UNEP-WCMC & I. U. C. N. (2021). Protected Planet Report 2020. *Gland: Cambridge, UK*.
- Vickery, J. A., Ewing, S. R., Smith, K. W., Pain, D. J., Bairlein, F., Skorpilova, J., & Gregory, R. D. (2014). The decline of Afro-Palaearctic migrants and an assessment of potential causes. *Ibis*, 156(1), 1-22.